Uncoupled Learning of Differential Stackelberg Equilibria with Commitments

Robert Loftin¹, Mustafa Mert Çelikok², Herke van Hoof³, Samuel Kaski^{2,4} and Frans A. Oliehoek¹

1. Delft University of Technology, 2. Aalto University, 3. University of Amsterdam, 4. University of Manchester

Introduction

We consider the problem of learning Stackelberg equilibria in general sum differentiable games. Under the Stackelberg equilibrium, the "leader" selects a strategy that maximizes their utility under the assumption that the "follower" will choose their best response to this strategy. The Stackelberg equilibrium is a natural solution concept in many settings, particularly those requiring cooperation between agents with conflicting preferences.

Previous work has presented gradient ascent algorithms for finding "local" Stackelberg equilibria in two-player differentiable games. These methods are **coupled** however, in the sense that the leader's gradient update depends on knowledge of the follower's utilities. As such, these methods cannot be applied to **ad hoc** settings, where the leader and follower are independent agents that have not previously interacted. Our work presents an **uncoupled** algorithm for learning local Stackelberg equilibria, based on zeroth-order optimization.

Stackelberg Equilbria

Let f_1 and f_2 be the leader and follower utilities. The Stackelberg objective for the leader's strategy x is then defined as

$$g(x) = f_1(x, BR(x)),$$

where $BR_2(x)$ is the follower's best response to x, that is

$$BR_2(x) = \underset{y \in \mathcal{Y}}{\operatorname{arg max}} f_2(x, y).$$

We assume that $BR_2(x)$ is unique for each x. A **differential** Stackelberg equilibrium is a joint strategy $\langle x, y \rangle$ s.t.

$$abla_x g(x) = 0, \quad \nabla_y f_2(x,y) = 0,$$
and for which the Hessians $\nabla_{xx} g(x)$ and $\nabla_{yy} f_2(x,y)$ are negative definite [1].

Hierarchical Gradient Ascent

The challenge in optimizing g(x) is that its gradient $\nabla_x g(x)$ depends on the Jacobian of the follower's best response function, $\nabla_x BR_2(x)$. In [1], the follower's Jacobian is computed as

$$\nabla_x BR_2(x) = -\left[\nabla_{yy} \mathbf{f}_2(x,y)\right]^{-1} \nabla_{xy} \mathbf{f}_2(x,y),$$

based on the implicit function theorem.

Alternatively, [2] differentiate through a finite number of follower gradient ascent steps, specifically taking

$$\nabla_x BR_2(x) \approx \eta \nabla_{xy} f_2(x,y)$$

as an approximation of the Jacobian of the follower's strategy after a single gradient ascent step. Both of these estimates depend on the Hessian of the follower's utility function $\nabla^2 f_2$.

illerarcincar Gradient Ascent

The **Hi-C** learning algorithm – follower strategies y_t are chosen by an unknown learning rule. Let $t(n) = \sum_{m=0}^{n-1} k_m$.

Inputs: Step-sizes $\{\alpha_n\}_{n\geq 0}$, perturbation schedule $\{\delta_n\}_{n\geq 0}$, commitment schedule $\{k_n\}_{n\geq 0}$.

Initialize: sample x_0 from \mathcal{X} for step $n=0,1,\ldots$ do sample Δ_n from $\{-1,1\}^{d_1}$. $\tilde{x}_n \leftarrow x_n + \delta_n \Delta_n$ for $t=t(n),\ldots,t(n)+k_n-1$ do play \tilde{x}_n .

observe $\tilde{y}_n \leftarrow y_t$.

end for for dimension $i=1,\ldots,d_1$ do $x_{n+1}^i \leftarrow x_n^i + \frac{\alpha_n}{\delta_n \Delta_n^i} [f_1(\tilde{x}_n,\tilde{y}_n) + w_t]$ end for end for

Uncoupled Learning

To optimize g(x) without knowing $\nabla^2 f_2$, we use a **gradient free** optimization method, in this case the onesample SPSA update [3] given by

$$x_{n+1} = x_n + \alpha_n \frac{g(x_n + \delta_n \Delta_n)}{\delta_n} \Delta_n,$$

where Δ_n is sampled uniformly from $\{-1,1\}^d$. To compute $g(\tilde{x}_n)$, the leader **commits** to the perturbed strategy \tilde{x}_n for k_n episodes, where $\{k_n\}_{n\geq 0}$ is a time-varying **commitment schedule**. It then uses the follower's most recent strategy after k_n episodes, which we denote as \tilde{y}_n , to approximate the followers true best response to \tilde{x}_n .

Convergence Results

For the right choice of commitment schedule $\{k_n\}_{n\geq 0}$, existing convergence results for one-sample SPSA apply.

• The "approximation error" of the follower's best response, that is,

$$\epsilon_n = \|\tilde{y}_n - BR_2(\tilde{x}_n)\|,$$

must decrease sufficiently fast. We must ensure that $\lim_{n\to\infty} \frac{\epsilon_n}{\delta_n} = 0$.

• When $f_2(x, \cdot)$ is **strongly concave**, choosing a commitment schedule for which $k_n = O(\log n)$ ensures that x_n will converge to a local optimum of g(x) as n goes to inifinity.

References

- [1] Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. "Implicit learning dynamics in Stackelberg games: Equilibria characterization, convergence analysis, and empirical study". In: *ICML*. 2020.
- [2] Jakob Foerster et al. "Learning with Opponent-Learning Awareness". In: AAMAS. 2018.
- [3] James C Spall. "A one-measurement form of simultaneous perturbation stochastic approximation". In: Automatica (1997).

