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Introduction

We consider the problem of learn-
ing Stackelberg equilibria in general
sum differentiable games. Under the
Stackelberg equilibrium, the“leader” se-
lects a strategy that maximizes their
utility under the assumption that the
“follower”will choose their best response
to this strategy. The Stackelberg equi-
librium is a natural solution concept in
many settings, particularly those requir-
ing cooperation between agents with
conflicting preferences.

Previous work has presented gradient
ascent algorithms for finding “local”
Stackelberg equilibria in two-player dif-
ferentiable games. These methods are
coupled however, in the sense that
the leader’s gradient update depends on
knowledge of the follower’s utilities. As
such, these methods cannot be applied
to ad hoc settings, where the leader and
follower are independent agents that
have not previously interacted. Our
work presents an uncoupled algorithm
for learning local Stackelberg equilibria,
based on zeroth-order optimization.

Stackelberg Equilbria

Let f1 and f2 be the leader and follower
utilities. The Stackelberg objective for
the leader’s strategy x is then defined as

g(x) = f1(x,BR(x)),

where BR2(x) is the follower’s best re-
sponse to x, that is

BR2(x) = argmax
y∈Y

f2(x, y).

We assume that BR2(x) is unique for
each x. A differential Stackelberg equi-
librium is a joint strategy ⟨x, y⟩ s.t.
∇xg(x) = 0, ∇yf2(x, y) = 0,

and for which the Hessians∇xxg(x) and
∇yyf2(x, y) are negative definite [1].

Hierarchical Gradient Ascent

The challenge in optimizing g(x) is that
its gradient ∇xg(x) depends on the Ja-
cobian of the follower’s best response
function, ∇xBR2(x). In [1], the fol-
lower’s Jacobian is computed as

∇xBR2(x) =−[∇yyf2(x, y)]
−1∇xyf2(x, y),

based on the implicit function theorem.

Alternatively, [2] differentiate through
a finite number of follower gradient as-
cent steps, specifically taking

∇xBR2(x) ≈ η∇xyf2(x, y)

as an approximation of the Jacobian of
the follower’s strategy after a single gra-
dient ascent step. Both of these esti-
mates depend on the Hessian of the
follower’s utility function ∇2f2.

Uncoupled Learning

To optimize g(x) without knowing
∇2f2, we use a gradient free opti-
mization method, in this case the one-
sample SPSA update [3] given by

xn+1 = xn + αn
g(xn + δn∆n)

δn
∆n,

where ∆n is sampled uniformly from
{−1, 1}d. To compute g(x̃n), the leader
commits to the perturbed strategy x̃n
for kn episodes, where {kn}n≥0 is a
time-varying commitment schedule.
It then uses the follower’s most recent
strategy after kn episodes, which we de-
note as ỹn, to approximate the followers
true best response to x̃n.

The Hi-C learning algorithm – follower
strategies yt are chosen by an unknown
learning rule. Let t(n) =

∑n−1
m=0 km.

Inputs: Step-sizes {αn}n≥0,
perturbation schedule {δn}n≥0,
commitment schedule {kn}n≥0.
Initialize: sample x0 from X
for step n = 0, 1, . . . do
sample ∆n from {−1, 1}d1.
x̃n← xn + δn∆n

for t = t(n), . . . , t(n)+ kn− 1 do
play x̃n.
observe ỹn← yt.

end for
for dimension i = 1, . . . , d1 do
xin+1← xin+

αn

δn∆i
n
[f1(x̃n, ỹn)+wt]

end for
end for

Convergence Results

For the right choice of commitment
schedule {kn}n≥0, existing convergence
results for one-sample SPSA apply.

•The “approximation error” of the fol-
lower’s best response, that is,

ϵn = ∥ỹn −BR2(x̃n)∥,
must decrease sufficiently fast. We
must ensure that limn→∞

ϵn
δn
= 0.

•When f2(x, ·) is strongly concave,
choosing a commitment schedule for
which kn = O(log n) ensures that xn
will converge to a local optimum of
g(x) as n goes to inifinity.
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