
Motivation and Theoretical Background - Precedential Constraint

In order to describe the fact situation of a case we use what are called dimensions in the AI & law literature [1], which are 
formally just partially ordered sets, i.e. a set together with a reflexive, antisymmetric, and transitive relation.

Definition A dimension is a partially ordered set         . We assume there is a set D of such dimensions. The orders of the 
dimensions indicate the relative preferences their values have towards either of two outcomes 0 and 1. This means that for 
values                 and             , then w prefers outcome 1 relative to v, and conversely v prefers outcome 0 relative to w. 

Example To give some intuition for these definitions we consider a running example of recidivism risk prediction. The 
dimensions we use are age, sex, and number of prior offenses. The definition of D is as follows: 

The choice of these orders mean that we consider younger males with many priors to be more likely to recidivate than older 
females with many priors. 

Definition A fact situation is a choice function on D, i.e. a function F with                 for each           . A fact situation paired 
with an outcome                    is a case. A case base CB is a set of cases. For a case p = (F, s) we write p(d) instead of F(d).

Example Consider two cases p, q in our recidivism example, both judged high risk (meaning paired with outcome 1):

Definition The way in which precedent constrains future decision making is modelled by the forcing relation on cases. For 
a case p with outcome 1 and a fact situation F we say p forces the outcome of F for outcome 1 if 

Example In our example above the outcome of the fact situation of q is forced for 1 by the case p.  
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Abstract

Widespread application of uninterpretable machine learning systems for sensitive purposes has spurred research into 
elucidating the decision making process of these systems. These efforts have their background in many different 
disciplines, one of which is the field of AI & law. In particular, recent works have observed that machine learning 
training data can be interpreted as legal cases. Under this interpretation the formalism developed to study case law, called 
the theory of precedential constraint, can be used to analyze the way in which machine learning systems draw on training 
data -- or should draw on them -- to make decisions. These works predominantly stay on the theoretical level, hence in 
the present work the formalism is evaluated on a real world dataset. Through this analysis we identify a significant new 
concept which we call landmark cases, and use it to characterize the types of datasets that are more or less suitable to be 
described by the theory. 

Landmark cases

In this work we bring attention to a special kind of cases that we call landmark cases, a notion that to the best of our 
knowledge is new in the literature. The motivating idea is that when a case has its outcome forced by another, it is -- by 
transitivity of the forcing relation -- rendered superfluous as a precedent. As such the most salient cases are those that do 
not have their outcome forced by another case; these are what we call landmarks.

Definition Cases in a case base CB which are minimal with respect to the forcing relation are called landmark cases.

Among landmarks we can further quantify impact by the number of cases of which they force the outcome. This leads us 
to define two sets that are of particular interest.

Definition Given a case base CB and an outcome s we define the set Ls of cases with outcome s that force the outcome of 
the greatest number of other cases in CB:

When Ls is a singleton we write ls for its sole element. 
 

Automatically Determining Dimension Orders

The main difficulty with making a precedential constraint model for a particular domain lies in determining the orders for 
the dimensions. For instance, in our example with recidivism data we have an age dimension, and to determine its 
respective order is to say whether the elderly are more likely to recidivate than the young, or vice versa. Knowledge 
engineering techniques and statistical methods can be used for this purpose. For instance, for the age dimension, much has 
been written on the interplay between age and recidivism, the conclusion of which is summarized by the adage that "people 
age out of crime" meaning that as people age they become decreasingly likely to recidivate. Another option is to look at 
statistical trends in the data, for instance, by considering the sign of the Pearson correlation between age and recidivism. If 
it is positive, we say that likelihood of recidivism increases with age, and if it is negative, we say it decreases.

A general method was proposed in [2] which uses a function c which associates each numerical feature x to a coefficient 
c(x) indicating the degree to which higher values favor outcome 1. If c(x) is positive then the higher the value, the higher 
the preference for outcome 1; if c(x) is negative then the lower the value, the higher the preference for outcome 1. This lets 
us assign the dimension order for a numerical feature by                                                                    If x is categorical we 
cannot apply c directly so we use dummy variables. More specifically, if x is a categorical feature which can take the 
possible (unordered) values                   , then we introduce for each value v a dummy variable dv which is a binary feature 
indicating whether x = v. Then we define 

 In [2] the value of c for a numerical feature is given by its 
Pearson correlation in the data. In this work we instead opt to 
use logistic regression, by fitting a logistic model to the 
features and then letting c assign a feature x to its 
corresponding coefficient in the logistic model

We opt to do it this way because the Pearson correlation 
approach seems to work poorly with categorical features. This 
is because for binary variables (such as the dummy variables 
this approach relies on) is given by the equation below:

The graph shown on the right illustrates the issue: too much 
emphasis is placed on class prevalence.  

Conclusion

In all, these results suggest that we can think of the phenomenon of inconsistency in two ways. The first is the 
mathematical view that the theory of precedential constraint contains a linearity assumption, and that the consistency 
percentage is a measure of the degree to which the data is linearly separable. Of each class, the landmarks are then those 
cases which lie furthest in the direction of the best fit linear decision boundary, and the farther they cross it the more 
inconsistency they cause. The second is the semantic view that it tells us to what degree the labelling process relies on a 
fortiori reasoning, or the degree to which we can expect precedent to be obeyed. If this is the case, then the landmarks are 
those cases that most reveal the nature of the underlying labelling process.  

Inconsistency, Linear Separability, and Adhering to Precedence 

High dimensional data is difficult to visualize, so in order to get a better view of these results we repeat our analysis on a 
subset of the data with only the two most predictive variables -- age and number of priors. The dimension orders remain 
the same as in the complete dataset. This lets us  visualize the data, the decision surface of our logistic model, and the 
landmarks l0 and l1, see the left plot below. The l0 and l1 cases highlight the cause for the inconsistency: there are many 
cases that lie on the opposite side of the decision boundary for their class, and so their 'forcing cones' contain many cases 
of the opposite class.

This makes sense intuitively, because when someone of a certain age and with some number of priors recidivates, we 
cannot expect this to set a precedent which future convicts will abide by. This type of reasoning should be more suited to 
our running example from earlier in which we judge risk of recidivism. To test this hypothesis we change the labels of the 
age and priors compas data according to a sensible risk assessment rule, listed in [4]:

Repeating our analysis again yields the graph on the right below. As expected this rule does satisfy the a fortiori principle, 
and as a result the consistency is very high (in fact the dataset is fully consistent). The l0 and l1 landmarksarks give a good 
sense of where the decision boundary is located.   
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Evaluating the Model on Recidivism Data

As an application and evaluation of the theoretical framework we use the COMPAS recidivism dataset from [3], which 
contains information on convicts and whether they recidivated within two years after being arrested for an initial charge. 
We selected a subset of the features and used our method to automatically determine the dimension orders, as shown here.

We then considered the degree to which the cases in the case base are consistent, by measuring the relative frequency of 
cases that do not have the opposite outcome they received forced by the rest of the case base. It turns out the case base is 
highly inconsistent, as the graph below demonstrate. This is caused entirely by a relatively small number of landmarks.

   Out of the 5873 cases only 473 were consistent, which gives a 
consistency percentage of 8%. The dataset contains just 88 landmarks, 
of which just 2 force the vast majority of the outcomes of other cases, 
as illustrated by the graph to the right. Each bar rerpresents one 
landmarks, and the height of the bar indicates the number of cases 
forced by that landmark. The leftmost are the l0 and l1 cases defined 
earlier. The l0 case is a 23 year old mate with many priors who 
committed a felony crime but did not recidivate. The l1 case is a 49 
year old female with no priors who committed a misdemeanor, but did 
recidivate. So we see they are archetypal examples of the wrong class.   


