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| The Problem

+ We want to find a DAG that represents the causal structure of our
environment. But, ...

» The search space of DAGs is big and, therefore, hard to navigate.
» Interventions can help but are costly to perform.
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| Our Approach

+ Provided a history of (interventional) samples and a current
estimate of their causal relations, we want to learn to:
« refine the current structure estimate, and
+ pick which intervention to perform
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| Meta-Learning Procedure

1. Randomly pick a training environment.
2. Perform a fixed amount of interventions and
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structure updates with the agent policy. step 1 2 3
3. Compare the estimated DAG to the ground truth. ® & ® & &) &
4. Update policy and go to . P lose @ LG
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Mean structural hamming distance over 50 training environments

Action  del(x2->x1) |do(x1=5.0) add(x1->x2) add(x0->x1) del(x2->x1) del(x2->x1) del(x2->x1)
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Conclusion

*+ We can meta-learn a causal discovery algorithm
through reinforcement learning that performs
budgeted interventions.

+ This proof of concept needs further investigations to
scale beyond toy problems.
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An example episode of the learned algorithm on two

observationally equivalent environments
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